Treating Anemia in MDS A pocket guide on active treatments for anemia in patients with MDS #### **Goals of Treatment** Many patients with MDS become transfusiondependent, resulting in complications. Active treatments can be used to help manage anemia associated with MDS. The primary goals of active treatment for LR-MDS are to increase patient quality of life by improving cytopenias and decreasing transfusion burden.^[1] ## Active Treatments Official recommendations describing the use of active treatments for MDS continue to evolve. Please review the latest NCCN Guidelines® for more information. Scan QR code here. | | (| E) | Q | |--|--|--|---| | Erythroid
Maturation Agents
(EMAs) ^[2-4]
Luspatercept | Mechanism of action Fusion proteins that inhibit the activity of TGF-β ligands, allowing for erythroid maturation through differentiation and increased erythroid precursors, thereby increasing RBC production and improvement of anemia | Role in MDS EMAs can be used for the treatment of anemia associated with MDS in patients with transfusion-dependent, LR-MDS regardless of previous exposure to ESAs | May improve anemia associated with MDS May facilitate transfusion independence and increased hemoglobin Can be used regardless of prior ESA use Risk of AEs including hypertension, fatigue, diarrhea, nausea, and dizziness | | Erythropoiesis-
Stimulating Agents
(ESAs) ^[5-11]
Epoetin alfa,
Darbepoetin alfa | Recombinant human
glycoproteins that
mimic the effect of EPO,
promoting differentiation,
proliferation, and survival
to drive production of
mature RBCs | ESAs are not indicated for treatment of anemia associated with MDS within the US, however there are clinical data to support their use in this setting | May improve anemia associated with MDS Can reduce the need for RBC transfusions Not FDA-approved for MDS Some patients are or may become treatment refractory Risk of AEs including asthenia, fatigue, and dyspnea | | Hypomethylating
Agents (HMAs) ^[1,12-15]
Azacitidine,
Decitabine,
Cedazuridine | Small molecules that are incorporated into nucleic acids, inhibiting DNA methylation and inducing hypomethylation to prevent the silencing of tumor suppressor genes | HMA use for treatment
of LR-MDS is limited to
late stages of treatment
after failure of 1L ESAs HMAs are the only
approved therapeutics
for patients with
HR-MDS who are not
suitable for intensive
treatment options | May lead to achievement of transfusion independence Can be used as a low dose, 3-day regimen based on prospective studies Patients may be at risk for developing resistance and relapse Risk of AEs including cytopenias, embryo-fetal toxicity, hepatotoxicity, renal toxicity, tumor lysis syndrome, and myelosuppresion | | Immunomodulatory
Agents
(IMiDs) ^[5,9,16,17]
Lenalidomide | Modulate E3 ubiquitin ligase substrate specificity, inhibiting proliferation and inducing apoptosis of MDS cells, as well as modulating immune cells in the bone marrow microenvironment to decrease cytopenias | IMiDs are used for the treatment of low- or intermediate-1 risk transfusion-dependent MDS with del(5q) with or without additional cytogenetic abnormalities | May lead to achievement of transfusion independenc Clinical data demonstrated complete cytogenetic response Limited efficacy in patients without del(5q) Black box warning for embryo-fetal toxicity, hematologic toxicity, and venous and arterial thromboembolism | The material herein is presented side-by-side for convenience purposes only. Head-to-head comparisons should not be made across products. # geted Therapy ## Treating Anemia in MDS ### A pocket guide on active treatments for anemia due to MDS | | | (+)
Mechanism of action | Role in MDS | Q Potential characteristics & limitations | |------------------------|--|--|--|--| | | Telomerase
Inhibitors ^[4,18-20]
Imetelstat | Inhibit telomerase activity
and prevent the continual
growth of malignant cells,
promoting cell death | Telomerase inhibitors can
be used to treat adult
patients with
transfusion-dependent,
LR-MDS who are
unresponsive to or
ineligible for ESA use | May lead to achievement of transfusion independence May reduce underlying population of malignant clones Risk of AEs, including severe thrombocytopenia or neutropenia, infusion-related reactions, infections or sepsis, fracture, cardiac failure, hemorrhage, elevated liver enzymes, and fatigue | | I di gered I i lei dpy | IDH1/IDH2
Inhibitors ^[21-28]
Ivosidenib (IDH1),
Olutasidenib (IDH1),
and Enasidenib
(IDH2) | Block the activity of
mutant IDH1 or IDH2
to induce myeloid
differentiation and
hematopoietic recovery | IDH1 inhibitors are used for treatment of adult patients with relapsed/ refractory MDS and a susceptible IDH1 (or IDH2; under investigation) mutation confirmed by molecular testing | May reduce blast cell counts and increase mature myeloid cells May lead to achievement of transfusion independence Potential achievement of complete remission within ~6 months Risk of AEs, including irregular heart rhythm, Guillain-Barré syndrome, fatigue, rash, leukocytosis, and laboratory abnormalities Black box warning for differentiation syndrome | For all therapies described, please see the full US Prescribing Information for more details, including warnings and adverse events. **Abbreviations:** 1L, first-line; AE, adverse event; EPO, erythropoietin; ESA, erythropoiesis-stimulating agent; FDA, U.S. Food and Drug Administration; HR-MDS, higher-risk MDS; IDH, isocitrate dehydrogenase; IMiD, immunomodulatory drugs; LR-MDS, lower-risk MDS; MDS, myelodysplastic syndromes; QoL, quality of life; RBC, red blood cell; TGF, transforming growth factor. References: 1. Platzbecker U. Blood. 2019;133(10):1096-1107. 2. Kubasch AS, et al. Blood Adv. 2021;5(5):1565-1575. 3. DailyMed. Luspatercept. Accessed May 2025. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=82f4d266-3f52-41eb-86ba-0abf3cf468e8 4. Merz AMA, Platzbecker U. Haematologica. 2025;110(2):330-338. 5. Trivedi G, et al. Trends Mol Med. 2021;27(10):990-999. 6. Elliot S, et al. Ann Hematol. 2014;93:181-192. 7. Fenaux P, et al. Leukemia. 2018;32:2648-2658. 8. Platzbecker U, et al. Leukemia. 2017;31:1994-1950. 9. Lewis R, et al. Cancer Manag Res. 2021;13:645-657. 10. DailyMed. Epoetin Alfa. Accessed May 2025. https://dailymed.nlm.nih.gov/dailymed/drugInfo. cfm?setid=1f2d0b28-9cc5-4523-80b8-637fdaf3f7a5 11. DailyMed. Darbepoetin Alfa. Accessed May 2025. https://dailymed.nlm.nih.gov/ dailymed/drugInfo.cfm?setid=0fd36cb9-c4f6-4167-93c9-8530865db3f9 12. Stomper J, et al. Leukemia. 2021;35:1873-1859. 13. DailyMed. Azacitidine. Accessed May 2025. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=cd9db533-8a49-4d01-99e2-b2db8db1ed38 14. DailyMed. Decitabine. Accessed May 2025. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=5662c353-05d0-4bd8-87e4c92ec9ca861e 15. DailyMed. Cedazurdine and decitabine. Accessed August 2025. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm? setid=5fa97bf5-28a2-48f1-8955-f56012d296be **16**. Roncador M et al. Blood. Published online August 4, 2025. doi:10.1182/blood.2025028619. 17. DailyMed. Lenalidomide. Accessed May 2025. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm? setid=5fa97bf5-28a2-48f1-8955-f56012d296be 18. Lennox AL et al. Clin Transl Sci. 2024;17(11):e70076. 19. DailyMed. Imetelstat. Accessed May 2025. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=b0fab7ca-e578-43c5-9df6-bdaff4182257 20. Platzbecker U et al. Lancet. 2024;403(10423):249-260.21. Molenaar RJ, Wilmink JW. J Histochem Cytochem. 2022;70(1):83-97. 22. Abou Dalle I, DiNardo CD. Ther Adv Hematol. 2018;9(7):163-173. 23. DiNardo CD, et al. Blood Adv. 2022;7(11):2378-2387. 24. DailyMed. Ivosidenib. Accessed May 2025. https:// dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=65d254c0-67ad-42c4-b972-ad463b755b2d 25. DailyMed. Olutasidenib. Accessed May 2025. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=4a0c7c8b-b95f-455d-9600-b7351e4397fe 26. DailyMed. Enasidenib. Accessed May 2025. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=a5b4cdf0-3fa8-4c6c-80f6-8d8a00e3a5b6 27. Zeidan AM et al. Blood. 2023;141(17):2047-2061. 28. Cortes JE et al. Blood. 2024;144(Supplement 1):4600-4601.